Краткое содержание работы: |
1
Двокроковий метод найменших квадратів
Нехай маємо таку модель:
функція доходу:
(1)
функція пропозиції грошей:
(2)
де - доход; - запас грошей; - інвестиційні витрати; - витрати уряду на товари та послуги.
Змінні та є екзогенними, та - ендогенними.
Рівняння доходу, яке ми розглядаємо, показує, що доход визначається пропозицією грошей, інвестиційними витратами та витратами уряду. Рівняння пропозиції грошей показує, що запас грошей визначається відповідно до рівня доходів. Очевидно, що ми маємо симультативну модель.
Застосовуючи умову порядку для її ототожнення, бачимо, що рівняння доходу неототожнене, тоді як рівняння пропозиції грошей - переототожнене. Переототожнена функція пропозиції грошей не може бути оцінена за допомогою методу ННК, тому що ми отримаємо дві різні оцінки .
Якщо застосувати метод найменших квадратів для оцінки невідомих параметрів рівняння пропозиції грошей, то отримані оцінки будуть зміщеними через кореляцію між змінною та випадковою величиною . Припустимо, що ми знайшли змінну, близьку до змінної в тому сенсі, що вона високо корелює з, але не є корельованою з . Така змінна називається допоміжною змінною. Якщо її можна знайти, то МНК можна застосовувати для оцінки функції грошової пропозиції. Але як отримати таку допоміжну змінну? За допомогою методу двокрокових найменших квадратів. З назви видно, що метод складається з двох етапів.
1. Щоб позбавитись кореляції між і, побудуємо спочатку регресійне рівняння залежності від усіх попередньо визначених змінних:
(3)
де e t є помилками. |
Комментариев: 0